Skip to main content

Open Educational Resources: Statistics

This site is designed to introduce OER initiatives, explain creative commons licensing and OER, and to help you get started searching for Open Educational Resources for teaching and learning.


On this page you will find several open Statistics textbooks along with supplemental material and a few lecture videos.  

The purpose of these discipline specific pages is to showcase content that might be of interest to faculty who are considering adopting open educational resources for use in their classes. This list of content is by no means exhaustive.  The nature of open educational resources is very collaborative and it is in that spirit that we encourage any comments about the content featured on this page or recommendations of content that are not already listed here. 

For more information about Creative Commons and quick reference to license definitions see the OU Creative Commons LibGuide.



Statistics  -OpenStax College 

Introductory Statistics follows the scope and sequence of a one-semester, introduction to statistics course and is geared toward students majoring in fields other than math or engineering. This text assumes students have been exposed to intermediate algebra, and it focuses on the applications of statistical knowledge rather than the theory behind it. The foundation of this textbook is Collaborative Statistics, by Barbara Illowsky and Susan Dean, which has been widely adopted. Introductory Statistics includes innovations in art, terminology, and practical applications, all with a goal of increasing relevance and accessibility for students. We strove to make the discipline meaningful and memorable, so that students can draw a working knowledge from it that will enrich their future studies and help them make sense of the world around them. The text also includes Collaborative Exercises, integration with TI-83,83+,84+ Calculators, technology integration problems, and statistics labs.  -OpenStax

Senior Contributors:

Barbara Illowsky, De Anza College

Susan Dean, De Anza College

This work is licensed under a Creative Commons Attribution 3.0 Unported  License.


Statistics  -OpenIntro

The authors of this text intend for the reader to develop a foundational understanding of statistical thinking methods.  Statistics is an applied field with a wide range of practical applications which a student does not have to be a math expert to understand even when using real, interesting data. Emphasized in this text is the practical applications of statistical tools. The authors have highlighted their imperfections and how student can use them to learn about the real world.  -OpenIntro.

This textbook has been adopted by OU faculty member, Dr. Claude Miller.


David M. Diez, Google/YouTube, Quantitative Analyst

Christopher D. Barr, Harvard School of Public Health, Biostatistics

Mine Çetinkaya-Rundel, Duke University, Statistics

 This text is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike license.


Combinatorics Through Guided Discovery  -Open Textbook Library

This book is an introduction to combinatorial mathematics, also known as combinatorics. The book focuses especially but not exclusively on the part of combinatorics that mathematicians refer to as “counting.” The book consists almost entirely of problems. Some of the problems are designed to lead you to think about a concept, others are designed to help you figure out a concept and state a theorem about it, while still others ask you to prove the theorem. Other problems give you a chance to use a theorem you have proved. From time to time there is a discussion that pulls together some of the things you have learned or introduces a new idea for you to work with. Many of the problems are designed to build up your intuition for how combinatorial mathematics works.  -Open Textbook Library


Kenneth Bogart, Dartmouth College, Mathematics

This text is licensed under a GNU Free Documentation License.


Online Stats Book  -David Lane

Online Statistics: An Interactive Multimedia Course of Study is a resource for learning and teaching introductory statistics. It contains material presented in textbook format and as video presentations. This resource features interactive demonstrations and simulations, case studies, and an analysis lab.  -David Lane

Lead Developer:

David Lane, Rice University, Statistics

This text is in the Public Domain.


Think Bayes: Bayesian Statistics in Python -Allen B. Downey

Think Bayes is an introduction to Bayesian statistics using computational methods. Most books on Bayesian statistics use mathematical notation and present ideas in terms of mathematical concepts like calculus. This book uses Python code instead of math, and discrete approximations instead of continuous mathematics. As a result, what would be an integral in a math book becomes a summation, and most operations on probability distributions are simple loops. -Allen B. Downey


Allen B. Downey, Ph.D., Computer Science, Olin College

This text is licensed under a Creative Commons Attribution-NonCommercial 3.0 License.


Think Stats: Probability and Statistics for Programmers -Allen B. Downey

Think Stats emphasizes simple techniques you can use to explore real data sets and answer interesting questions. The book presents a case study using data from the National Institutes of Health. Readers are encouraged to work on a project with real datasets. if you have basic skills in Python, you can use them to learn concepts in probability and statistics. Think Stats is based on a Python library for probability distributions (PMFs and CDFs). Many of the exercises use short programs to run experiments and help readers develop understanding. -Allen B. Downey


Allen B. Downey, Ph.D., Computer Science, Olin College

This text is licensed under a Creative Commons Attribution-NonCommercial 3.0 License.

Open Textbook Collections

Find more Statistics textbooks in these collections



Open Textbook Library

The Open Textbook Library is a collection of open textbooks that features reviews written by professors.  A project of the University of Minnesota, The Open Textbook Library provides a review rubric for faculty to use when evaluating textbooks and displays them for the benefit of potential adopters. 

College Open Textbooks

The College Open Textbooks Collaborative, a collection of twenty-nine educational non-profit and for-profit organizations, affiliated with more than 200 colleges, is focused on driving awareness and adoptions of open textbooks to more than 2000 community and other two-year colleges. This includes providing training for instructors adopting open resources, peer reviews of open textbooks, and mentoring online professional networks that support for authors opening their resources, and other services.  -College Open Textbooks

BC Campus Open Ed

The B.C. Open Textbook Project is funded by the BC Ministry of Advanced Education, and BCcampus is tasked with managing it. A goal of the Project is to provide flexible and affordable access to higher education resources in B.C. by making available 40 openly-licensed textbooks. These texts will be available for selection by B.C. faculty, and digital versions of the texts will be free of charge to students. For those who prefer a printed copy, this format will also be available on demand for a low cost. -BC Campus


MERLOT is a collection of online resources curated by a community of faculty, staff, and students of higher education.  This subset of the MERLOT collection features openly licensed textbooks for use by students and faculty.  MERLOT allows its users to rate materials and comment on specific resources.

Supplemental Materials

Flowing Data  -Nathan Yau

FlowingData explores how designers, statisticians, and computer scientists are using data to understand ourselves better — mainly through data visualization.  -Nathan Yau


Nathan Yau, Ph. D., University of California, Los Angeles, Statistics

Unless otherwise noted, graphics and text on this site are licensed under a Creative Commons Attribution-NonCommercial  License. Original authors should be contacted regarding their work. 


Probability and Statistics Videos  -Khan Academy

Khan Academy features a collection of tutorial videos on the subject of Probability and Statistics.  This collection features multiple videos on each of the following topics: independent and dependent events, probability and combinatorics, descriptive statistics, random variables and probability distributions, regression, and inferential statistics. 

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License.


Statistical Reasoning  -Carnegie Mellon University

Statistical Reasoning introduces students to the basic concepts and logic of statistical reasoning and gives the students introductory-level practical ability to choose, generate, and properly interpret appropriate descriptive and inferential methods. In addition, the course helps students gain an appreciation for the diverse applications of statistics and its relevance to their lives and fields of study. The course does not assume any prior knowledge in statistics and its only prerequisite is basic algebra.  -Carnegie Mellon University

This site is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License.



Lecture Videos

Probabilistic Systems Analysis and Applied Probability  -MIT OpenCourseware

This course focuses on the modeling and analysis of random phenomena and processes, including the basics of statistical inference. Nowadays, there is broad consensus that the ability to think probabilistically is a fundamental component of scientific literacy.  -MIT Open CourseWare


Prof. John Tsitsiklis, Massachusetts Institute of Technology, Electrical Engineering

Use of the MIT OpenCourseWare site and materials is subject to their Creative Commons License and other terms of use.



Statistics for Behavorial Science  -New York University

This course provides students with the basic tools for evaluating data from studies in the behavioral sciences, particularly psychology. Students will gain familiarity with data description, variance and variability, significance tests, confident intervals, correlation and linear regression, analysis of variance, and other related topics.  The goal is to learn the application of statistical reasoning to decision making. Current events are often used to illustrate these issues.  -New York University


Professor Elizabeth Bauer, New York University, Arts and Sciences

The content in this course is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike license



All original content on this page is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. All linked-to content adheres to its respective license.

Creative Commons License